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Abstract - Accurate egg placement into or onto a living host is an essential ability for many parasitoids, and
changes in associated phenotypes, such as ovipositor morphology and behaviour, correlate with significant host
shifts. Here, we report that in the ichneumonid group of koinobiont spider-ectoparasitoids (“polysphinctines”),
several putatively ancestral taxa (clade I here), parasitic on ground-dwelling RTA-spiders (a group
characterised by retrolateral tibial apophysis on male palpal tibiae), lay their eggs in a specific way. They
tightly bend their metasoma above the spider’s cephalothorax, touching the carapace with the dorsal side of the
ovipositor apically (“dorsal-press”). The egg slips out from the middle part of the ventral side of the ovipositor
and moves towards its apex with the parted lower valves acting as rails. Deposition occurs as the parasitoid
draws the ovipositor backwards from under the egg. Oviposition upon the tough carapace of the cephalothorax,
presumably less palatable than the abdomen, is conserved in these taxa, and presumed adaptive through
avoiding physical damage to the developing parasitoid. This specific way of oviposition is reversed in the
putatively derived clade of polysphinctines (clade II here) parasitic on Araneoidea spiders with aerial webs,
which is already known. They bend their metasoma along the spider’s abdomen, grasping the abdomen with
their fore/mid legs, pressing the ventral tip of the metasoma and the lower valves of the ovipositor against the
abdomen (“ventral-press”). The egg is expelled through an expansion of the lower valves, which is developed only
in this clade and evident in most species, onto the softer and presumably more nutritious abdomen.

Keywords: Polysphinctine, Oviposition, Ventral-press, Dorsal-press, RTA-clade, Araneoidea

Résumé - Utilisation modifiée de l’ovipositeur au cours des changements d’hote chez les
ichneumonidés ectoparasitoides d’araignées (Hymenoptera, Ichneumonidae, Pimplinae). Le
placement précis des ceufs dans ou sur un hote vivant est une capacité essentielle pour de nombreux parasitoides,
et les changements dans les phénotypes associés, tels que morphologie des ovipositeurs et comportement, sont
corrélés avec des changements significatifs d’hdte. Nous rapportons ici que dans le groupe des ichneumonidés
koinobiontes ectoparasitoides d’araignées (« polysphinctines »), plusieurs taxons putatifs ancestraux (clade I
ici), parasites d’araignées terrestres RTA (un groupe caractérisé par une apophyse tibiale rétrolatérale sur les
tibias des palpes males), pondent leurs oeufs d’une maniére spécifique ; ils courbent étroitement leur métasome
au-dessus du céphalothorax de 'araignée, touchant apicalement la carapace avec le coté dorsal de 'ovipositeur
(« pression dorsale »). L'oeuf s’écoule de la partie médiane du coté ventral de 'ovipositeur et se déplace vers son
sommet avec les valves inférieures séparées agissant comme des rails, le dépot de ’ceuf se produisant lorsque le
parasitoide tire I'ovipositeur en arriére de sous l'ceuf. La ponte sur la carapace dure du céphalothorax,
vraisemblablement moins agréable au gotit que l’abdomen, est conservée chez ces taxons, et présumée
adaptative en évitant les dommages physiques au parasitoide en développement. Cette voie spécifique de ponte
est inversée dans le clade putatif dérivé des polysphinctines (clade 1T ici) parasites d’araignées Araneoidea avec
des toiles aériennes, qui est déja connu. Ils courbent leur métasome le long de I’abdomen de I’araignée, saisissent
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I’abdomen avec leurs pattes antérieures et médianes, pressent I’extrémité ventrale du métasome et les valves
inférieures de I'ovipositeur contre ’abdomen (« pression ventrale »). L’ceuf est expulsé par une expansion des
valves inférieures, qui est développée seulement dans ce clade et évidente dans la plupart des espéces, sur

I’abdomen, plus doux et probablement plus nutritif.

Introduction

Oviposition is a crucial event in the life history of
parasitoids [50] and placing the egg precisely into or onto a
living host presents both behavioural and mechanical
challenges. In addition to having a point sharp enough to
pierce the integument of the host for the typical function of
administering venom, the ovipositor in parasitoid wasps
shows many structural adaptations for different functional
behaviours [12,42,104,106,109], derived from the oviposi-
tor’s base plan of an upper valve and a pair of more or less
interlocking lower valves that can slide independently
[105,107]. Apomorphic characters in its form can reflect
phylogeny. In general, especially in the case of ichneumo-
noid ectoparasitoids of concealed hosts and endoparasi-
toids, the egg is expelled down a canal enclosed by the
three valves to erupt near the ovipositor tip to reach an
appropriate place for oviposition. However, in a few groups
of ectoparasitoid ichneumonids with a koinobiont lifestyle
(i.e. allowing the host to recover normal activity for a time
after being attacked) in which the parasitoid can make
direct bodily contact with the host, the egg may issue
direct from the genital opening without involvement of the
ovipositor, as is also seen in all aculeates which make
similar contact with the food source of their offspring
(briefly reviewed by Shaw & Wahl [114]).

Ichneumonidae, in general, parasitise the pre-adult
stages of holometabolous insects, with a few groups having
adopted spider egg-sacs and egg-nests as pabula, their
larvae devouring successive eggs. In some cases (Zaglyptus
in the subfamily Pimplinae), the maternal egg-guardian of
cursorial spiders (e.g. Eutichuridae making egg-nests) is
permanently immobilised and also consumed [70,95].
Probably from this association with egg-nests by certain
Pimplinae (in addition to Zaglyptus there is Tromatobia,
which oviposits into exposed undefended egg-sacs or
defended ones without paralysis of the guarding spider),
the Polysphincta genus-group (hereafter polysphinctines)
has evolved as a unique lineage of solitary koinobiont
ectoparasitoids of spiders [48,86,131] (Fig. 1; see also Fig. 2
insets), widely demonstrated to be monophyletic
[48,86,108]. Polysphinctines inject venom in the host’s
cephalothorax to cause temporarily paralysis for the
purpose of oviposition, but after the egg is attached the
spider recovers its normal activity until the parasitoid
larva approaches full growth.

In a recent molecular study, Matsumoto [86] proposed
two well-supported and reciprocally monophyletic major
clades within this group: clade I, the Schizopyga subgroup
sensu Matsumoto, and clade IT equal to the Acrodactyla

and Polysphincta subgroups sensu Matsumoto. Matsu-
moto [86] pointed out two ecological differences between
the two clades: 1) they use different hosts and 2) the
oviposition and hence larval development site on the host
spider differs between the clades; larvae of clade I are
exclusively attached to the cephalothorax while larvae of
clade II are exclusively attached to the abdomen.

Matsumoto [86] regarded clade I as the more ancestral,
with clade IT being derived, and we outline our reasons for
concurring with that view in the Discussion. However, the
supposition that clade II is derived suggests of course that,
if the polysphinctines are monophyletic as has been widely
supported [48,86,108], the group called clade I will be
paraphyletic with respect to clade II. In this paper, the
relationship between the two supposed clades cannot be
further elucidated, and “clade I” is used as a convenience
term without the strict implication of unequivocal
monophyly, though clade II is considered monophyletic.

For this paper, we have focused particularly on the
behaviour of the group considered more ancestral (herein
clade I), whose biology was previously poorly understood
and for some groups unknown. Our detailed observations
on the oviposition behaviour in both previously unstudied
and already studied wasp genera strongly support the
hypothesis proposed by Matsumoto [86] and we can show
that the host groups used by the two wasp clades are not
only ecologically but also phylogenetically different: clade
I uses RTA-clade spiders (see Terminology) (hosts
previously noted for three genera [36,37,85,86,95] and
for a further two in this study), and clade IT uses spiders of
Araneoidea (numerous sources, see Table 1) with a single
apparently secondary reversion (see Discussion). More
importantly, we add a behavioural distinction regarding
oviposition between the two clades, and additionally link
differences in ovipositor morphology to the different
behaviours.

Terminology

Cephalothoraz: The fused head and thorax of spiders,
also called the prosoma.

Carapace: A sclerotized plate covering the cephalo-
thorax dorsally.

RTA-clade: A huge monophyletic lineage of spiders
which was first proposed by Coddington and Levi, having
retrolateral tibial apophysis (hence RTA) on male palpal
tibiae [23]. Subsequently RTA has been consistently
recognised to be a clear major (clade-defining) synapo-
morphy in many phylogenetic studies of Araneae
[1,13,22,44,59,60,90,122,143]. The RTA-clade currently
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Figure 1. Simplified phylogenetic relationship within polysphinctine clades and its outgroups including spider egg-nest parasitoids,
after Matsumoto [86]. The upper inserted photo is the awl-like ovipositor of Brachyzapus nikkoensis, a representative of clade I, and the
lower one is the ovipositor of Zatypota albicoza, a representative of clade II, with a ventral expansion at the proximal end of the lower
valves (arrowed).

Figure 2. Oviposition by representative polysphinctines of clade I and II. A Brachyzapus nikkoensis (polysphinctine clade I)
demonstrating the dorsal-press upon the cephalothorax of Agelena silvatica (Agelenidae), taken by Y.T. in Mizumoto Park, Tokyo,
Japan in 14 June 2009. Circular inset is a middle instar larva of B. nikkoensis on the cephalothorax of A. silvatica. B Zatypota albicoxa
(polysphinctine clade II) demonstrating the ventral-press upon the abdomen of Parasteatoda tepidariorum (Koch, 1841) [74]
(Theridiidae), taken by Y.T. in Mizumoto Park, Tokyo, Japan in 6 August 2008. Circular inset is a middle instar larva of Z. albicoza on
the abdomen of P. tepidariorum.
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Table 1. Behaviour and ecology (immature position and host taxa) in polysphinctine clades I and II. Note that Hymenoepimecis
robertsae parasitising a nephiline spider is mentioned here from a drawing suggesting the dorsal-press as in clade I [35]. Owing to the
lack of behavioural description in the paper, we believe further observation is needed before the stance it truly manifests can be
determined. Nothing is known about the immature biology of Dreisbachia, Inbioia (clade I), Aravenator, Chablisea, Lamnatibia,
Pterinopus and Ticapimpla (clade IT) at present. Taxa in which oviposition stance has not been specified are grouped under the generic
name.

Species Matsumoto’s  Oviposition Egg/larval Family of host Reference
clade stance position (web type)
Brachyzapus nikkoensis (Uchida, clade I dorsal-press cephalothorax Agelenidae this study in
1928) [135] (n =3) [69,85] (plane funnel web) Japan
Piogaster sp. clade I dorsal-press cephalothorax Salticidae this study in
(n =6) [see also 113] (cursorial) Finland
Zabrachypus sp. clade I dorsal-press cephalothorax Titanoecidae this study in
(n =4) [see also 112] (ground-web) Europe
Iania pictifrons (Thomson, 1877) clade I dorsal-press cephalothorax Clubionidae this study in
[129] (n =1) [36,37,113] (cursorial) Finland
Schizopyga circulator (Panzer, clade I dorsal-press  cephalothorax Clubionidae [86]
1800) [101] [also 36, 37] (cursorial) [also 36,
37]
Schizopyga frigida Cresson,1870 [25] clade I unknown cephalothorax Clubionidae [36,37]
(cursorial)
Schizopyga podagrica Gravenhorst,  clade I unknown cephalothorax Eutichuridae [95]
1829 [58] (cursorial)
Reclinervellus tuberculatus (Uchida, clade II ventral-press  abdomen Araneidae (orb web)  [87]
1932) [136]
Hymenoepimecis argyraphaga clade 1T ventral-press abdomen Tetragnathidae (orb  [30]
Gauld, 2000 [48] web)
Hymenoepimecis veranii Loffredo clade IT ventral-press abdomen Araneidae (orb web)  [53]
& Penteado-Dias, 2009 [83]
Hymenoepimecis robertsae Gauld, clade II unclear abdomen Araneidae, [35]
1991 [46] which stance Nephilinae (orb web)
is used
Zatypota albicoza clade 1T ventral-press  abdomen Theridiidae (cobweb) [127]
Zatypota maculata Matsumoto clade IT ventral-press  abdomen [88] Theridiidae (cobweb) K. Takasuka
& Takasuka, 2010 [8§] (in prep.) in
Japan
Acrodactyla carinator (Aubert, clade 1T unknown abdomen Tetragnathidae (orb  [11,19,36,68,
1965) [3], A. degener (Haliday, web); Linyphiidae 77,86,89)
1838) [62], A. quadrisculpta (3D web with a
(Gravenhorst, 1820) [57] sheet)
Acrotaphus fuscipennis (Cresson, clade II unknown abdomen Araneidae (orb web)  [16,33,55]
1865) [24], A. tibialis (Cameron,
1886) [20], A. williti (Cresson, 1870)
25
FEriostethus minimus Gauld, 1984 clade II unknown abdomen Araneidae (orb web), [76,86]
[45], E. rufus (Uchida, 1932) [136], Theridiidae (cobweb)
E. perkinsi (Baltazar, 1964) [6]
Eruga cf. gutfreundi Gauld, 1991 clade II unknown abdomen Tetragnathidae (orb  [8,33,120]

[46], E. telljohanni Gauld, 1991 [46],
E. unilabiana Padua & Sobczak,
2017 [120]

web), Linyphiidae
(3D web with a
sheet)
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Species Matsumoto’s  Oviposition Egg/larval Family of host Reference
clade stance position (web tvpe)
Flacopimpla barathrica Fritzén, clade IT unknown abdomen Theridiidae (cobweb) [27,40,121]
2014 [40], F. parva (Cresson, 1870)
[25], F. varelae Gauld, 1991 [46]
Hymenoepimecis bicolor clade IT unknown abdomen Araneidae (orb web); [33,52,54,98,
(Brullé, 1846) [18], H. japi Araneidae, 115-117]
Sobczak, Loffredo, Penteado- Nephilinae
Dias, & Gonzaga, 2009 [117], (orb web);
H. jordanensis Loffredo Araneidae,
& Penteado-Dias, 2009 [83], Cyrtophorinae
H. manauara Padua & Oliveira, (3D web with a
2016 [98], H. neotropica dome-shape
(Brues & Richardson, 1913) [17], platform);
H. silvanae Loffredo & Tetragnathidae
Penteado-Dias, 2009 [83], (orb web)
H. sooretama Sobczak, Loffredo,
Penteado-Dias, & Gonzaga,
2009 [117], H. tedfordi Gauld,
1991 [46]
Longitibia sp. clade II unknown abdomen Linyphiidae (3D web R. Matsumoto
with a sheet) and K.
Takasuka
(unpublished)
in Japan
Megaetaira madida (Haliday, 1838)  clade II unknown abdomen Tetragnathidae (orb  [36,63,92]
[62], M. varicarinata (Uchida & web)
Mormoi, 1958) [138]
Ozyrrhexis carbonator clade IT unknown abdomen Theridiidae (cobweb) [26,41]
(Gravenhorst, 1807) [56],
O. carbonator texana
(Cresson, 1870) [25],
0. zephyrus Fritzén,
2014 [41]
Polysphincta boops Tschek, 1869 clade 1T unknown abdomen Araneidae (orb web) [7,14,32,36,43,
[133], P. gutfreundi Gauld, 1991 72,73,78,111]
[46], P. janzeni Gauld, 1991 [46],
P. koebelei Howard, 1892 [67],
P. longa Kasparyan, 1976 [71],
P. sp. nr. purcelli Gauld, 1991 [46],
P. rufipes Gravenhorst, 1829 [58],
P. tuberosa Gravenhorst, 1829 [58]
Reclinervellus masumotos clade II unknown abdomen Araneidae (orb web)  [38,69,87,
Matsumoto & Konishi, 2007 [87], 124,128]
R. nielseni (Roman, 1923) [110]
Sinarachna nigricornis (Holmgren,  clade II unknown abdomen Araneidae (orb web)  [36,37,93]
1860) [65], S. pallipes (Holmgren,
1860) [65]
Zatypota spp. (numerous) clade IT unknown abdomen Theridiidae [7,9,31,39,40,51,
(cobweb); 66,67,75,79,80,

Linyphiidae (3D web
with a sheet);
Dictynidae
(cobweb); Araneidae
(orb web)

88,119,124,140,
142




6 K. Takasuka et al.: Parasite 2018, 25, 17

consists of 43 families in eight higher groups in accordance
with Wheeler et al. [143], which are largely vagabonds or
ground web weavers. The superfamily Titanoecoidea has
been proposed to be an immediate outgroup of the RTA-
clade [60,143].

Materials and methods

We observed oviposition behaviour of several Europe-
an and Japanese polysphinctine species in vitro and in the
field, parts of which will be published in detail later.
Zatypota albicoza (Walker, 1874) [141], a member of clade
IT, for which oviposition behaviour is already known [125-
127], was also looked at in more detail for corroboration
and comparison with clade I. We focused especially on how
the wasps use their ovipositor when ovipositing. The
known behaviour of polysphinctines from published
sources (mainly clade IT), together with our new findings,
are listed in Table 1 (Oviposition stance). In addition to
behaviour, data on egg position (Egg/larval position) and
host family records with their web type in parenthesis
(Family of host) given in Table 1 has been gleaned from
the literature when either description or illustration has
been unequivocal.

For data on ovipositor morphology, we largely follow
Gauld & Dubois [48], but we have personally checked
species of most of the polysphinctine genera, particularly
focusing on species and literature concerning genera where
our observations on ovipositor morphology differ from
that indicated in Gauld & Dubois [48] (Ozyrrhezis) or for
genera of particular interest for their ovipositor morphol-
ogy (e.g. Oxzyrrhexis and Chablisea).

Results

Oviposition stance

We first discovered that Brachyzapus nikkoensis,
belonging to clade I of the polysphinctines, lays its egg
on the host spider (3 observations in total by 2 individuals
in Tokyo, Japan in June 2009, host Agelena silvatica
Oliger, 1983 [97], Agelenidae) in a rather specific way,
contrasting with what we had seen in other genera
(belonging to clade IT). After temporarily paralysing the
spider by stinging into its cephalothorax, the wasp initially
bends its metasoma inward underneath its body with the
dorsal tip of its metasoma and, in particular, the dorsal
side of the ovipositor’s apical part touching the spider’s
carapace (dorsal-press, Figs. 2A, 3A-d, S1). It then
stretches the metasoma out (Fig. 3A-d, S1) while the
egg is expelled onto the spider’s carapace. When doing
this, the wasp grasps the host’s cephalothorax with its
legs, having its head and ovipositor both pointing in the
same direction, and the wasp thus has visibility of the
oviposition site. Later, our studies on members of a further
three genera, Piogaster sp. (cf. pilosator Aubert, 1958 [2])
in Finland in 2015 and 2016 (6 observations in total by 2
individuals, host Salticus cingulatus (Panzer, 1797) [100],

Salticidae), Zabrachypus sp. from Germany ex Titanoeca
quadriguttata (Hahn, 1833) [61] in 2015 (4 observations in
total by 3 individuals, surrogate Finnish host Titanoeca
spominima (Taczanowski, 1866) [123], Titanoecidae) and
Iania pictifrons in Finland in 2016 (1 observation, host
Clubiona subsultans Thorell, 1875 [130], Clubionidae),
showed that this behaviour was the common one for clade I.
Additionally, Matsumoto [86] gives a photograph of
Schizopyga circulator clearly ovipositing on Clubiona
rostrata Paik, 1985 [99] (Clubionidae) in the same way.
In ovipositions by B. nikkoensis studied in situ and
Piogaster sp. studied in wvitro, the subjugated host lay
prone (the ventral side below) on the plane sheet web or the
substrate with the parasitoid sitting astride. Concerning
L. pictifrons and Zabrachypus sp. studied in vitro, at least
occasionally the temporarily paralysed spider can be
hanging from its silk with the parasitoid almost being
upside down but still employing the typical dorsal-press
action and ovipositing onto the carapace.

For the species in clade II, the movement of the
metasoma during oviposition is very different. The female
presses the ventral tip of its metasoma against the spider,
making contact with the ventral side of at least the base of
the ovipositor, and pulls the metasoma inward (ventral-
press, Figs. 2B, 3B-d, S2), while the egg is expelled onto
the spider’s abdomen. When doing this, the wasp uses its
legs more widely to grasp the abdomen and surrounds, and
the head of the wasp is far away from the oviposition site
(on small host specimens it may even be on the opposite
side of the host) with the ovipositor tip and head pointing
in opposite directions. Thus, it has little or no visibility of
the oviposition site.

Oviposition site

In clade I, the egg is applied exclusively to the carapace
of the host’s cephalothorax (Figs. 2A, 3A-c) (with our two
additions, Zabrachypus and Piogaster, it is recorded in
altogether five of the seven genera of clade I, Table 1)
whereas in clade II it is attached exclusively to the
abdomen of the host (Figs. 2B, 3B-c), corroborated by
many sources without exception (observed in 13 out of the
18 genera of clade II, Table 1).

Egg expulsion

At least in B. nikkoensis (n=3) and Piogaster sp.
(n=1) (less complete observations on I. pictifrons (n = 1),
and Zabrachypus sp. (n=1) are consistent but inexact)
the egg issues from the middle part of the ventral side of
the ovipositor (Fig. 3A-b) and is guided distally along the
ovipositor with the parted lower valves acting as rails
(Fig. 3A-c), finally being placed onto the carapace as the
ovipositor is withdrawn backwards from under it. In the
species of clade IT that we have studied, the egg is expelled
neither from the middle region of the ovipositor nor from
the genital opening but from near the base of the ovipositor
(Figs. 2B, 3B-b). Egg expulsion ensues here at the site of
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A. Clade | a. Awl-like ovipositor

without expansion

b. An egg is expelled from the middle
of the ovipositor while the apical part
of the dorsal valve of the ovipositor is

. in contact with the spider
e. Cursorial or ground-web P

(RTA-clade, non aerial-web)

c. The egg is slipped out
along ovipositor onto the
spider's cephalothorax

d. Direction (red arrows) in
which the abdomen is drawn

B. Clade I

a. An expansion in proximal
end of ovipositor

d. Direction (red arrows) in

which the abdomen is drawn b. An egg is expelled from the base

of the ovipositor through the proxi-
mal expansion while the basal part
of the ventral valves of the oviposi-
tor is in contact with the spider

e. Aerial-web such as orb

web, cobweb (Araneoidea)
c. The egg is attached onto abdomen by
pressing and pulling parasitoid's metasoma

Figure 3. Schematic diagram of oviposition behaviour and egg-expulsion. A the dorsal-press of clade I, B the ventral-press of clade II.
Lowercase symbols are explanations of characteristics that differ between the two clades.
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Figure 4. Awl-like ovipositor of clade I spp. with no ventral expansion at the proximal end. A Brachyzapus nikkoensis, B Dreisbachia
punctata (Uchida & Momoi, 1959) [139], C Ilania sp., D Inbioia pivai Gauld & Ugalde Gomez, 2002 [49] (holotype in NHM),
E Piogaster daisetsuzana Kusigemati, 1985 [81], F Schizopyga frigida.

an expansion of the lower valves of the ovipositor (Figs. 1~ Ovipositor morphology of clades | and Il

arrow, 3B-a). During oviposition in both dorsal-press and

ventral-press behaviours, the ovipositor itself is finally The base of the ovipositor is ventrally simple (Figs. 1

withdrawn in the same overall direction in relation to the upper inset, 3A-a, 4) in all known genera of clade I, whereas
egg, while the egg is placed (S1, S2). in most genera of clade II, it is distinctly expanded (Figs. 1
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Figure 5. Ovipositor of clade II spp. with expansion near its proximal end. A Acrodactyla takewakii (Uchida, 1927) [134],
B FEriostethus rufus, C Megaetaira varicarinata, D Reclinervellus tuberculatus, E Sinarachna sp., F Zatypota maculata.

lower inset, 3B-a, 5). Only in Ozyrrhezis (Fig. 6A), Chablisea ~ Taxonomy of the hosts

(Fig. 6B) and Aravenator kamijoiMomoti, 1973 [91] (Fig. 6C)

of clade 1II is this expansion at least superficially lacking When known hosts for the genera of clade I including
(see [41,82,102]). Polysphincta has a rather weak expansion  the new hosts discovered by us (for Zabrachypus and
(Fig. 6D) in comparison with other clade II genera. Piogaster), and the hosts for clade IT (Table 1) are mapped
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(C)

Figure 6. Ovipositor of clade II spp. with little or no expansion near its proximal end. A Ozxyrrhezis carbonator, B Chablisea sp.,

C Aravenator kamijoi, D Polysphincta rufipes.

onto the most recent phylogeny of spiders [29,44,143], it is
evident that the two polysphinctine clades use phylogeneti-
cally different groups of hosts. Clade I utilises both cursorial
and ground-web building spiders exclusively of the RTA-
clade (Figs. 2A, 3A-e), plus the superfamily Titanoecoidea
constituting an immediate outgroup of the RTA-clade [143],
while clade II taxa attack aerial-web weaving spiders, of
which all but a few (Dictynidae, see Discussion) belong to
the superfamily Araneoidea (Figs. 2B, 3B-e).

Discussion

We have discovered that there are two clearly different
oviposition stances in the polysphinctines, which we have
called the dorsal-press and the ventral-press, reflecting
which side of the ovipositor is in contact with the host. The
former was previously unknown. We have also found that
the different stances are linked to the phylogeny of the
wasps, and additionally that the two stances clearly
correlate with egg placement (and thus also larval
development site), ovipositor morphology, place of egg
expulsion, and finally with host taxonomy.

We posit that the dorsal-press, our newly-discovered
oviposition stance used by polysphinctines of clade I only,
which is the group regarded as the more ancestral [86],
indicates an early evolutionary path of spider-ectoparasi-
tism in comparison with that of clade II, in which species
use the ventral-press.

The arguments advanced by Matsumoto [86] for
regarding clade I as the more ancestral of the two major
clades are accepted here, with some additional supporting
observations. The genus Tromatobia, one of the immedi-
ate outgroups in Matsumoto’s analysis, mainly uses egg-
sacs of Araneoidea [4,5,21,28,34,36,37,46,63,84,92,96,103,
118,132,137] (more rarely other groups [4,36,37,64]) that
are either unguarded or, if guarded, the parasitoid does not
envenomate let alone consume the female spider. In fact,
as far as is known, it has no adverse interaction with the
spider itself. These Araneoidea do not have a role as hosts
of clade I polysphinctines but are the almost invariable
hosts of clade II polysphinctines. However, there seems
little in the biology of Tromatobiato suggest that it is close
to the ancestry of clade II polysphinctines. On the other
hand, the main hosts of Zaglyptus (the other immediate
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outgroup in Matsumoto’s analysis) are in concealed egg-
nests with a guarding female in RT A-clade families such as
Clubionidae, Eutichuridae and Salticidae [4,34,36,37,
69,70,92,95] (rarely using hosts outside the RTA-clade
such as Araneidae, Theridiidae and Tetragnathidae [4,36,
37]), and the female is not only stung and permanently
immobilised prior to oviposition but also at least partly
consumed by the ensuing progeny [70,95] and, perhaps
most significantly, the guarding spider will be consumed if
she is still gravid when paralysed [95]. Thus, the closest
biology, host associations, and degree of physical contact
exhibited by known taxa parasitising spider egg-sacs or
egg-nests involves RTA-clade hosts which are attacked in
more or less concealed sites. This strongly suggests that
these hosts will be involved in the ancestry of the
polysphinctines as a whole, such that clade I is likely to
be the more ancestral of the two clades. Despite the finding
by Matsumoto [86] that in his phylogeny the single
included species of Clistopyga fell outside the clade
representing the polysphinctines + the two genera includ-
ed in his analysis (Tromatobia and Zaglyptus) that use
spider egg-sacs or egg-nests, it seems possible that a
reappraisal of the position of Clistopyga may help to
elucidate the origin of the polysphinctines. In this case,
clade I would again be indicated as the more ancestral.
This is because one species of Clistopyga is known to be a
solitary idiobiont ectoparasitoid of adult/subadult Salt-
icidae (in the RTA-clade) alone in its nest [42], while
others have been reared in small broods from concealed
nests of the RTA-clade Clubionidae and the more
ancestral [143] and biologically similar (ground and
rock-fissure tube-web [10,15]) Segestriidae containing
egg-sacs within which they appeared to have fed [36,94].

The dorsal-press of clade I is linked to the following: 1)
oviposition on the cephalothorax of the host (Fig. 2A), 2)
base of lower valves of the ovipositor simple (Figs. 1 upper
inset, 3A-a, 4), 3) egg expulsion along the middle part of
the ventral side of the ovipositor (Fig. 3A-b), and 4)
utilisation of cursorial or ground-web weaving hosts
belonging to the RTA-clade of spiders and its immediate
outgroup (Table 1, Figs. 2A, 3A-e). The ventral-press of
clade II is linked to 1) oviposition on the abdomen of the
host (Fig. 2B), 2) expanded base of the lower valves of the
ovipositor (Figs. 1 lower inset, 3B-a, 5), 3) egg expulsion
from the base of the ventral side of the ovipositor (Fig. 3B-
b), and 4) utilisation of aerial-web weaving hosts
(Figs. 2B, 3B-e) that, with only a few exceptions, belong
to the spider superfamily Araneoidea (Table 1).

The oviposition behaviour (as opposed to mere egg
placement, which is very much better observed) for species
of four genera in clade I, documented by us, and
additionally Schizopyga illustrated by Matsumoto [86],
has previously not been known. However, the oviposition
behaviour in clade II has already been seen in three genera
(Table 1). Additionally, the movement of the metasoma
during oviposition in clade II had not been thoroughly
described before.

Several species of clade II are already known not to
expel the egg from the tip of the ovipositor (see [127];

Figs. 2B, 3B-b, S2). Although the eggs had previously
been considered to be expelled from the genital opening
(= below the base of the ovipositor, near the tip of
metasoma) [30,87,127]|, we have seen in several species
that they are actually expelled from the base of the
ovipositor (Figs. 2B, 3B-b, S2). This is not easily seen and
we thus suspect that the interpretations of previous
observations could be wrong and that all members of clade
IT actually expel the egg from the base of the ovipositor,
not from the genital opening (unlike e.g. Aculeata). Eggs
are expelled from the expansion at the proximal end of the
ovipositor’s lower valves (Fig. 3B-b), seemingly an
autapomorphy of clade II, indicating a potential function-
al relationship between this modification and the ventral-
pressing behaviour (Fig. 3B-c). For example, in whatever
way it is mechanically involved in the expulsion of the egg
and/or adhesive material, the expansion at the proximal
end may have a sensory function facilitating exact egg
placement or simply a role of steadying the ovipositor onto
the spider’s skin while the egg is laid.

The egg expulsion along the middle part of the
ovipositor reported here for members of clade I has not
previously been documented in polysphinctines. We have
clearly seen this in B. nikkoensis and in Piogaster sp., and
our further incomplete observations (I. pictifrons and
Zabrachypus sp.) suggest that it is likely to be the case in
the other genera of clade I as well.

There are also noteworthy differences between the two
clades ecologically. We can show that the two clades
use phylogenetically different groups of hosts with partly
distinctly different ecology. Clade I utilises both cursorial
(hunting without a web but sometimes with a silken
chamber for resting or egg-laying [cf. Fig. 3 in 15]) and
ground-web building spiders exclusively of the RT A-clade
and its immediate outgroup (Titanoecidae). Conversely,
clade IT attacks aerial-web weaving spiders mostly of the
superfamily Araneoidea. These two spider groups form
major distinct lineages within Entelegynae, which is
hyperdiverse and the most derived monophyletic group,
i.e. comprising the two major lineages (RTA-clade and
Araneoidea) with several subclades [29,44,143].

Polysphinctine clades T and II apparently separated
through a host shift, and many well-preserved characters
are linked to oviposition and immature development.
Parasitism of non-aerial-web weaving spiders, i.e. the
RTA-clade (Figs. 2A, 3A-e), presumably practised by the
first true polysphinctines, is evidently connected with the
exclusive use of the cephalothorax as oviposition site
where larval development commences, although after
substantial growth and when the host is quiescent in its
retreat, the larva also feeds from and consumes the
abdomen [cf. Fig. 2a in 85]. Likewise the final instar larva
of clade II also feeds from the cephalothorax of its recently
killed host [30]. Despite the resulting larva then being
faced with arguably a tougher pabulum than might be
provided by the softer tissues of the host’s abdomen, one
possible reason for the use of the cephalothorax instead of
the abdomen in clade I is that the egg and larva would be
more exposed to physical damage on the abdomen than in
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a lower position on the carapace of RT A-spiders actively
running on the plane and hiding in small crevices or in a
thin tubular retreat, even in RTA web-weavers (e.g.
Agelenidae). An obvious general need for accuracy in egg
deposition might be served well by using the orientation of
the ovipositor over a substantial part of its length as a
guiding device, adequately facilitating oviposition onto
the relatively flat surface of the carapace. Also, visibility of
the oviposition site (Fig. 2A) would be aided by the stance
adopted for the dorsal-press.

On the other hand, aerial-web weaving host spiders
used by clade II (mainly Araneoidea; Figs. 2B, 3B-e)
usually settle in or on their webs, probably causing less risk
of physical damage to a polysphinctine egg or larva by
strenuous movement. This also opens up easier access to
these softer and arguably more palatable or nutritious
tissues for the larva. In addition, these spiders typically
droop from their own threads after subjugation and the
parasitoid hangs from the spider’s abdomen via its fore/
middle legs (Figs. 2B, 3B). In such unstable situations, the
ventral-press might facilitate egg deposition onto a distant
and less visible side of the abdomen (Figs. 2B, 3B), with a
consequent transfer of the site for egg expulsion and an
expansion of the ovipositor at its proximal end.

Once the major host shift occurred between clades I
and II, the two opposite oviposition stances seem to be
largely fixed for coping with each host spider group. At
least on the basis of the extant biota, the utilisation of
Araneoidea appears to have promoted a stronger radiation
and/or survival among clade II (18 genera, >200 species).
This is probably associated with feeding advantages and
easier location of the conspicuous webs of Araneoidea than
is seen among clade I (7 genera, <50 species), despite the
greater species-richness of the RTA-clade (24,681 species
in 2,073 genera [144], 43 families of eight higher groups
[143]) than Araneoidea (12,394 species in 1,130 genera
[144], 17 families [29]). However, an apparently fixed host-
group reversal onto an RTA-clade host, Dictyna spp.
(Dictynidae), by a species of the clade IT polysphinctine
Zatypota anomala (Holmgren, 1860) [65] has taken place
[67,75,140], but retaining typical Zatypota egg placement.
This colonisation of an RTA-clade host presumably
occurred because Dictyna inhabits aerial parts of plants
(rather than being ground-dwelling) and produces webs
similar to those of the theridiid (Araneoidea) hosts
parasitised by most Zatypota species in similar habitats.

Any possible relationship between the position of the
egg on the abdomen, the exact oviposition process, and the
variable size and nature of the ventral expansion at the
proximal end of the ovipositor among clade II taxa (weak
in Polysphincta (Fig. 6D); apparently absent in Ozy-
rrhexis (Fig. 6A) and in two genera of completely unknown
biology, Chablisea (Fig. 6B) and Aravenator (Fig. 6C)) is
beyond the scope of this paper, but might be a worthwhile
and revealing study.
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